Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Dev Comp Immunol ; 133: 104443, 2022 08.
Article in English | MEDLINE | ID: covidwho-20241503

ABSTRACT

The COVID-19 pandemic is a wake-up call on the zoonotic viral spillover events and the need to be prepared for future outbreaks. Zoonotic RNA viruses like the Middle East respiratory syndrome coronavirus (MERS-CoV) are potential pathogens that could trigger the next pandemic. Dromedary camels are the only known animal source of MERS-CoV zoonotic infections, but little is known about the molecular antiviral response in this species. IFN-ß and other type-I interferons provide the first line of defense against invading pathogens in the host immune response. We identified the IFNB gene of the dromedary camel and all extant members of the family Camelidae. Camelid IFN-ß is unique with an even number of cysteines in the mature protein compared to other eutherian mammals with an odd number of cysteines. The viral mimetic poly(I:C) strongly induced IFN-ß expression in camel kidney cells. Induction of IFN-ß expression upon infection with camelpox virus was late and subdued when compared to poly(I:C) treatment. Prokaryotically expressed recombinant dromedary IFN-ß induced expression of IFN-responsive genes in camel kidney cells. Further, recombinant IFN-ß conferred antiviral resistance to camel kidney cells against the cytopathic effects of the camelpox virus, an endemic zoonotic pathogen. IFN-ß from this unique group of mammals will offer insights into antiviral immune mechanisms and aid in the development of specific antivirals against pathogens that have the potential to be the next zoonotic pandemic.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Animals , Antiviral Agents , Camelus , Eutheria , Humans , Interferon-beta/genetics , Middle East Respiratory Syndrome Coronavirus/genetics , Pandemics , Zoonoses
2.
Vaccines (Basel) ; 11(5)2023 May 21.
Article in English | MEDLINE | ID: covidwho-20238903

ABSTRACT

The COVID-19 pandemic has underscored the importance of swift responses and the necessity of dependable technologies for vaccine development. Our team previously developed a fast cloning system for the modified vaccinia virus Ankara (MVA) vaccine platform. In this study, we reported on the construction and preclinical testing of a recombinant MVA vaccine obtained using this system. We obtained recombinant MVA expressing the unmodified full-length SARS-CoV-2 spike (S) protein containing the D614G amino-acid substitution (MVA-Sdg) and a version expressing a modified S protein containing amino-acid substitutions designed to stabilize the protein a in a pre-fusion conformation (MVA-Spf). S protein expressed by MVA-Sdg was found to be expressed and was correctly processed and transported to the cell surface, where it efficiently produced cell-cell fusion. Version Spf, however, was not proteolytically processed, and despite being transported to the plasma membrane, it failed to induce cell-cell fusion. We assessed both vaccine candidates in prime-boost regimens in the susceptible transgenic K18-human angiotensin-converting enzyme 2 (K18-hACE2) in mice and in golden Syrian hamsters. Robust immunity and protection from disease was induced with either vaccine in both animal models. Remarkably, the MVA-Spf vaccine candidate produced higher levels of antibodies, a stronger T cell response, and a higher degree of protection from challenge. In addition, the level of SARS-CoV-2 in the brain of MVA-Spf inoculated mice was decreased to undetectable levels. Those results add to our current experience and range of vaccine vectors and technologies for developing a safe and effective COVID-19 vaccine.

3.
Journal of Global Trends in Pharmaceutical Sciences ; 14(1):366-371, 2023.
Article in English | EMBASE | ID: covidwho-2316286

ABSTRACT

Monkey pox, a zoonotic disease with clinical symptoms resembling smallpox, unexpectedly broke out and spread over the world after the outbreak of COVID-19, severely affecting several of the continents of the world. Monkey pox is currently a member of the genus otrhopox virus, which is a member of the sub family chorodoxvirinae. According to the available knowledge, small mammals and rodents have all been identified as potential sources of the monkey [ox virus]. The disease is characterized by a short febrile illness with lymphadenopathy followed by a rash which spreads centrifugally and passes through phases of macules, papules, vesicles, and pustules. Recovery occurs in most patients within 2-4 wk. Complications are more likely in children, pregnant women, and the immunocompromised. Specific diagnosis is by detection of viral DNA by PCR.Tecovirimat, brincidofovir, and cidofoviir are the medications used to treat monkey pox, immunoglobulin and new compounds are the vaccinations. This review will introduce a general overview of MPXV and describe the epidemiology, clinical features, evaluation, and treatment of monkey pox patients.Copyright © Journal of Global Trends in Pharmaceutical Sciences.

4.
Journal of Medical Pharmaceutical and Allied Sciences ; 12(1):5635-5643, 2023.
Article in English | Scopus | ID: covidwho-2314224

ABSTRACT

In South Asia, cattle are afflicted by the expanding virulent condition known as Lumpy Skin Disease (LSD), and sheep pox and goat pox are caused by the Capri virus. These illnesses endanger worldwide trade. Due to inadequate immunisations and poverty in rural areas, Capricorn poxviruses are spreading. This is due to the economic repercussions of the COVID-19 epidemic, debilitating sanctions in endemic countries, a growth in the legal and criminal trade of live animals and animal products, and global climate change. Skin spores are the main route of infection;however, the virus is also excreted through bodily fluids and semen. As a result, the virus is transmitted to susceptible hosts by biting flies, mosquitoes, and other insects. Insects can be transstadial and transovarial. Lumpy skin disease lesions can swell and rupture after 7 to 14 days in experimental settings, but it usually takes 2 to 5 weeks in a normal infection. Lumpy skin disease is characterised by hard, constrictive, few (mild forms) to numerous (severe forms) skin nodules that may encompass respiratory, urogenital, and other organ mucous membranes. Consequently, milk output decreases, and in countries that raise cattle, there are more abortions, cases of temporary or permanent infertility, hide damage, and mortality, all of which result in a financial loss. The best method for limiting the spread and monetary impacts of lumpy skin disease is mass immunisation and other management measures. This review provides the latest information on lumpy skin disease's viral biology, transmission, clinical, and pathological aspects. © 2023 Journal of medical pharmaceutical and allied sciences. All rights reserved.

5.
Viruses ; 15(3)2023 03 07.
Article in English | MEDLINE | ID: covidwho-2286494

ABSTRACT

The majority of emerging viral infectious diseases in humans originate from wildlife reservoirs, such as rodents and bats. We investigated a possible reservoir, namely wild gerbils and mice trapped in a desert reserve within the emirate of Dubai, United Arab Emirates (UAE). In total, 52 gerbils and 1 jird (Gerbillinae), 10 house mice (Mus musculus), and 1 Arabian spiny mouse (Acomys dimidiatus) were sampled. Oro-pharyngeal swabs, fecal samples, attached ticks, and organ samples (where available) were screened by (RT-q)PCR for the following viruses: Middle East respiratory syndrome-related coronavirus, Crimean-Congo hemorrhagic fever orthonairovirus, Alkhumra hemorrhagic fever virus, hantaviruses, Lymphocytic choriomeningitis mammarenavirus, Rustrela virus, poxviruses, flaviviruses, and herpesviruses. All of the samples were negative for all investigated viruses, except for herpesviruses: 19 gerbils (35.8%) and seven house mice (70.0%) were positive. The resulting sequences were only partly identical to sequences in GenBank. Phylogenetic analysis revealed three novel betaherpesviruses and four novel gammaherpesviruses. Interestingly, species identification of the positive gerbils resulted in eight individuals clustering in a separate clade, most closely related to Dipodillus campestris, the North African gerbil, indicating either the expansion of the geographic range of this species, or the existence of a closely related, yet undiscovered species in the UAE. In conclusion, we could not find evidence of persistence or shedding of potentially zoonotic viruses in the investigated rodent cohorts of limited sample size.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Middle East Respiratory Syndrome Coronavirus , Humans , Animals , Mice , Pilot Projects , United Arab Emirates/epidemiology , Phylogeny , Gerbillinae
6.
Microbiol Spectr ; 11(1): e0194322, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2242938

ABSTRACT

We utilized a high-throughput cell-based assay to screen several chemical libraries for inhibitors of herpes simplex virus 1 (HSV-1) gene expression. From this screen, four aurora kinase inhibitors were identified that potently reduced gene expression during HSV-1 lytic infection. HSV-1 is known to interact with cellular kinases to regulate gene expression by modulating the phosphorylation and/or activities of viral and cellular proteins. To date, the role of aurora kinases in HSV-1 lytic infection has not been reported. We demonstrated that three aurora kinase inhibitors strongly reduced the transcript levels of immediate-early (IE) genes ICP0, ICP4, and ICP27 and impaired HSV-1 protein expression from all classes of HSV-1, including ICP0, ICP4, ICP8, and gC. These restrictions caused by the aurora kinase inhibitors led to potent reductions in HSV-1 viral replication. The compounds TAK 901, JNJ 7706621, and PF 03814735 decreased HSV-1 titers by 4,500-, 13,200-, and 8,400-fold, respectively, when present in a low micromolar range. The antiviral activity of these compounds correlated with an apparent decrease in histone H3 phosphorylation at serine 10 (H3S10ph) during viral infection, suggesting that the phosphorylation status of H3 influences HSV-1 gene expression. Furthermore, we demonstrated that the aurora kinase inhibitors also impaired the replication of other RNA and DNA viruses. These inhibitors significantly reduced yields of vaccinia virus (a poxvirus, double-stranded DNA, cytoplasmic replication) and mouse hepatitis virus (a coronavirus, positive-sense single-strand RNA [ssRNA]), whereas vesicular stomatitis virus (rhabdovirus, negative-sense ssRNA) yields were unaffected. These results indicated that the activities of aurora kinases play pivotal roles in the life cycles of diverse viruses. IMPORTANCE We have demonstrated that aurora kinases play a role during HSV-1 lytic infection. Three aurora kinase inhibitors significantly impaired HSV-1 immediate-early gene expression. This led to a potent reduction in HSV-1 protein expression and viral replication. Together, our results illustrate a novel role for aurora kinases in the HSV-1 lytic cycle and demonstrate that aurora kinase inhibitors can restrict HSV-1 replication. Furthermore, these aurora kinase inhibitors also reduced the replication of murine coronavirus and vaccinia virus, suggesting that multiple viral families utilize the aurora kinases for their own replication.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Immediate-Early Proteins , RNA Viruses , Animals , Mice , Herpesvirus 1, Human/genetics , Immediate-Early Proteins/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Cell Line , Herpes Simplex/genetics , DNA/metabolism , RNA/metabolism , Life Cycle Stages
8.
Mol Immunol ; 153: 212-225, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2165717

ABSTRACT

The last two decades have seen the emergence of three highly pathogenic coronaviruses with zoonotic origins, which prompted immediate attention to the underlying cause and prevention of future outbreaks. Intensification of camel husbandry in the Middle East has resulted in increased human-camel interactions, which has led to the spread of potentially zoonotic viruses with human spillover risks like MERS-coronavirus, camelpox virus, etc. Type-I interferons function as the first line of defense against invading viruses and are pivotal for limiting viral replication and immune-mediated pathologies. Seven novel dromedary camel interferon delta genes were identified and cloned. Functional characterization of this novel class of IFNs from the mammalian suborder tylopoda is reported for the first time. The camel interferon-delta proteins resemble the reported mammalian counterparts in sequence similarity, conservation of cysteines, and phylogenetic proximity. Prokaryotically expressed recombinant camel interferon-δ1 induced IFN-stimulated gene expression and also exerted antiviral action against camelpox virus, an endemic zoonotic virus. The pre-treatment of camel kidney cells with recombinant camel IFN-δ1 increased cell survival and reduced camelpox virus in a dose-dependent manner. The identification of novel IFNs from species with zoonotic spillover risk such as camels, and evaluating their antiviral effects in-vitro will play a key role in improving immunotherapies against viruses and expanding the arsenal to combat emerging zoonotic pathogens.


Subject(s)
Camelus , Interferon Type I , Animals , Camelus/genetics , Camelus/immunology , Interferon Type I/genetics , Interferon Type I/immunology , Middle East Respiratory Syndrome Coronavirus/genetics , Phylogeny
9.
Journal of Pharmaceutical Negative Results ; 13:174-179, 2022.
Article in English | Web of Science | ID: covidwho-2124245

ABSTRACT

Monkey pox is an infectious viral disease which spread from animals to humans. This virus is a new concern, as recently the identification of emerging cases of monkey pox virus other than African Continent in May 2022. It showed its spread in other parts of world because of international tourism and exchange of certain animals. Hence it is important to evaluate and discuss the management of monkeypox infections in humans to prevent the spread of the disease. The objective of this review is discuss the spread of monkey pox disease world-wide, study its symptoms for prompt identification of the disease with the aim to abolish all possible modes of transmission to protect public health and to prevent the possibility of spread of another pandemic, after COVID-19.

10.
Clin Pathol ; 15: 2632010X221131660, 2022.
Article in English | MEDLINE | ID: covidwho-2089023

ABSTRACT

Monkeypox is a zoonotic disease caused by the monkeypox virus (MPXV). It was an epidemic infection among African countries over the last few decades. In 2022, MPXV has been broke through in Africa, America, Eastern Mediterranean, Europe, South-East Asia, and Western Pacific region. This widespread infection of MPXV has created panic across the nations, and the WHO has declared a global public health emergency due to the multi-country MPX outbreak. We prepared this brief report on the MPX outbreak 2022 by extracting data from Scopus, PubMed, and website databases. We manually read all the relevant articles from our target databases. The rapid spread of MPX infection in around a 100 countries has threatened the global healthcare systems. The available epidemiological data revealed that sexual orientations and encounters are potential contributing factors for monkeypox infections. However, it has not been categorized as a sexually transmitted infection. Also, MPXV can transfer from 1 individual to others in many ways. The empowerment of this old foe has created additional pressure and threat on the healthcare authorities during the ongoing Covid-19 pandemic. Effective preventive measures, social awareness, and therapeutic approaches can reduce this extra burden on the healthcare system across the countries. Focusing only on sexual orientations and encounters as risk factors for MPX infection might increase stigma that will be another barrier to controlling and preventing MPXV spread. Therefore, we should be careful in delivering messages about MPX infection to the general population. Also, we recommend repositioning the existing smallpox vaccines and antivirals in MPX infection until the development of specific antiviral agents against this infection.

11.
Trop Med Infect Dis ; 7(10)2022 Oct 03.
Article in English | MEDLINE | ID: covidwho-2066498

ABSTRACT

The last few decades have witnessed an appalling rise in several emerging and re-emerging viral and zoonotic outbreaks. Such outbreaks are a lesson to learn from and seek insight into better disease monitoring and surveillance, thus preventing future outbreaks. Monkeypox, a viral zoonotic illness caused by the monkeypox virus, may no longer be endemic to the tropical rainforests of Central and West Africa. However, the current monkeypox outbreak in nonendemic countries is most likely due to failure to curb the disease dissemination in endemic African regions despite decades of constant outbreaks. The clinical manifestations are typified by a prodromal phase (fever, myalgia, malaise, and lymphadenopathy) followed by maculopapular or vesicular, or pustular cutaneous eruptions that eventually form encrustations and peel off. Children and the elderly, pregnant females, and individuals living with comorbidities (diabetes, HIV/AIDS, and lymphoproliferative ailments) are at a high risk of severe disease. Monkeypox is a self-limiting disorder, but its complications and pandemic potential signify its immense public health relevance. The recent ongoing monkeypox outbreak in nonendemic nations areas was identified with increased propensity in men who have sex with men (MSMs) with no travel history to endemic regions, emphasizing the changing trends in disease transmission. This review article provides an updated overview of the monkeypox disease taxonomy, pathogenesis, transmission, epidemiology, clinical and oral features, diagnostic aids, differential diagnosis, preventive aspects, and treatment protocol.

12.
Vaccines (Basel) ; 10(9)2022 Sep 13.
Article in English | MEDLINE | ID: covidwho-2041170

ABSTRACT

Modified vaccinia virus Ankara (MVA) is a promising viral vector for vaccine development. MVA is well studied and has been widely used for vaccination against smallpox in Germany. This review describes the history of the origin of the virus and its properties as a vaccine, including a high safety profile. In recent years, MVA has found its place as a vector for the creation of vaccines against various diseases. To date, a large number of vaccine candidates based on the MVA vector have already been developed, many of which have been tested in preclinical and clinical studies. We discuss data on the immunogenicity and efficacy of some of these vaccines.

13.
Journal of Virology ; 96(3):16, 2022.
Article in English | Web of Science | ID: covidwho-1755941

ABSTRACT

In the age of COVID, nucleic acid vaccines have garnered much attention, at least in part, because of the simplicity of construction, production, and flexibility to adjust and adapt to an evolving outbreak. Orthopoxviruses remain a threat on multiple fronts, especially as emerging zoonoses. In response, we developed a DNA vaccine, termed 4pox, that protected nonhuman primates against monkeypox virus (MPXV)-induced severe disease. Here, we examined the protective efficacy of the 4pox DNA vaccine delivered by intramuscular (i.m.) electroporation (EP) in rabbits challenged with aerosolized rabbitpox virus (RPXV), a model that recapitulates the respiratory route of exposure and low dose associated with natural smallpox exposure in humans. We found that 4pox-vaccinated rabbits developed immunogen-specific antibodies, including neutralizing antibodies, and did not develop any clinical disease, indicating protection against aerosolized RPXV. In contrast, unvaccinated animals developed significant signs of disease, including lesions, and were euthanized. These findings demonstrate that an unformulated, nonadjuvanted DNA vaccine delivered i.m. can protect against an aerosol exposure. IMPORTANCE The eradication of smallpox and subsequent cessation of vaccination have left a majority of the population susceptible to variola virus or other emerging poxviruses. This is exemplified by human monkeypox, as evidenced by the increase in reported endemic and imported cases over the past decades. Therefore, a malleable vaccine technology that can be mass produced and does not require complex conditions for distribution and storage is sought. Herein, we show that a DNA vaccine, in the absence of a specialized formulation or adjuvant, can protect against a lethal aerosol insult of rabbitpox virus.

14.
Cell Host Microbe ; 30(3): 357-372.e11, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1693798

ABSTRACT

The induction of interferon (IFN)-stimulated genes by STATs is a critical host defense mechanism against virus infection. Here, we report that a highly expressed poxvirus protein, 018, inhibits IFN-induced signaling by binding to the SH2 domain of STAT1, thereby preventing the association of STAT1 with an activated IFN receptor. Despite encoding other inhibitors of IFN-induced signaling, a poxvirus mutant lacking 018 was attenuated in mice. The 2.0 Å crystal structure of the 018:STAT1 complex reveals a phosphotyrosine-independent mode of 018 binding to the SH2 domain of STAT1. Moreover, the STAT1-binding motif of 018 shows similarity to the STAT1-binding proteins from Nipah virus, which, similar to 018, block the association of STAT1 with an IFN receptor. Overall, these results uncover a conserved mechanism of STAT1 antagonism that is employed independently by distinct virus families.


Subject(s)
Poxviridae , Animals , Interferons/metabolism , Mice , Poxviridae/metabolism , STAT1 Transcription Factor/genetics , Signal Transduction
15.
J Virol ; 96(3): e0150421, 2022 02 09.
Article in English | MEDLINE | ID: covidwho-1546442

ABSTRACT

In the age of COVID, nucleic acid vaccines have garnered much attention, at least in part, because of the simplicity of construction, production, and flexibility to adjust and adapt to an evolving outbreak. Orthopoxviruses remain a threat on multiple fronts, especially as emerging zoonoses. In response, we developed a DNA vaccine, termed 4pox, that protected nonhuman primates against monkeypox virus (MPXV)-induced severe disease. Here, we examined the protective efficacy of the 4pox DNA vaccine delivered by intramuscular (i.m.) electroporation (EP) in rabbits challenged with aerosolized rabbitpox virus (RPXV), a model that recapitulates the respiratory route of exposure and low dose associated with natural smallpox exposure in humans. We found that 4pox-vaccinated rabbits developed immunogen-specific antibodies, including neutralizing antibodies, and did not develop any clinical disease, indicating protection against aerosolized RPXV. In contrast, unvaccinated animals developed significant signs of disease, including lesions, and were euthanized. These findings demonstrate that an unformulated, nonadjuvanted DNA vaccine delivered i.m. can protect against an aerosol exposure. IMPORTANCE The eradication of smallpox and subsequent cessation of vaccination have left a majority of the population susceptible to variola virus or other emerging poxviruses. This is exemplified by human monkeypox, as evidenced by the increase in reported endemic and imported cases over the past decades. Therefore, a malleable vaccine technology that can be mass produced and does not require complex conditions for distribution and storage is sought. Herein, we show that a DNA vaccine, in the absence of a specialized formulation or adjuvant, can protect against a lethal aerosol insult of rabbitpox virus.


Subject(s)
Nucleic Acid-Based Vaccines/immunology , Orthopoxvirus/immunology , Poxviridae Infections/prevention & control , Vaccinia virus/immunology , Vaccinia/prevention & control , Viral Proteins/immunology , Viral Vaccines/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Dose-Response Relationship, Immunologic , Electroporation , Female , Immunization/methods , Immunogenicity, Vaccine , Lymphocyte Activation/immunology , Nucleic Acid-Based Vaccines/administration & dosage , Oligodeoxyribonucleotides/administration & dosage , Oligodeoxyribonucleotides/immunology , Rabbits , Vaccines, DNA/immunology , Vaccinia virus/genetics , Viral Vaccines/administration & dosage
16.
Vaccines (Basel) ; 9(9)2021 Aug 27.
Article in English | MEDLINE | ID: covidwho-1374553

ABSTRACT

Development of a vaccine against HIV remains a major target goal in the field. The recent success of mRNA vaccines against the coronavirus SARS-CoV-2 is pointing out a new era of vaccine designs against pathogens. Here, we have generated two types of mRNA vaccine candidates against HIV-1; one based on unmodified vectors and the other on 1-methyl-3'-pseudouridylyl modified vectors expressing a T cell multiepitopic construct including protective conserved epitopes from HIV-1 Gag, Pol and Nef proteins (referred to as RNA-TMEP and RNA-TMEPmod, respectively) and defined their biological and immunological properties in cultured cells and in mice. In cultured cells, both mRNA vectors expressed the corresponding protein, with higher levels observed in the unmodified mRNA, leading to activated macrophages with differential induction of innate immune molecules. In mice, intranodal administration of the mRNAs induced the activation of specific T cell (CD4 and CD8) responses, and the levels were markedly enhanced after a booster immunization with the poxvirus vector MVA-TMEP expressing the same antigen. This immune activation was maintained even three months later. These findings revealed a potent combined immunization regimen able to enhance the HIV-1-specific immune responses induced by an mRNA vaccine that might be applicable to human vaccination programs with mRNA and MVA vectors.

17.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Article in English | MEDLINE | ID: covidwho-1284760

ABSTRACT

Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) has emerged as the infectious agent causing the pandemic coronavirus disease 2019 (COVID-19) with dramatic consequences for global human health and economics. Previously, we reached clinical evaluation with our vector vaccine based on modified vaccinia virus Ankara (MVA) against the Middle East respiratory syndrome coronavirus (MERS-CoV), which causes an infection in humans similar to SARS and COVID-19. Here, we describe the construction and preclinical characterization of a recombinant MVA expressing full-length SARS-CoV-2 spike (S) protein (MVA-SARS-2-S). Genetic stability and growth characteristics of MVA-SARS-2-S, plus its robust expression of S protein as antigen, make it a suitable candidate vaccine for industrial-scale production. Vaccinated mice produced S-specific CD8+ T cells and serum antibodies binding to S protein that neutralized SARS-CoV-2. Prime-boost vaccination with MVA-SARS-2-S protected mice sensitized with a human ACE2-expressing adenovirus from SARS-CoV-2 infection. MVA-SARS-2-S is currently being investigated in a phase I clinical trial as aspirant for developing a safe and efficacious vaccine against COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Animals , COVID-19 Vaccines/standards , Dose-Response Relationship, Immunologic , Humans , Mice , Mice, Inbred BALB C , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes , Vaccination , Vaccinia virus
18.
Semin Immunol ; 50: 101430, 2020 08.
Article in English | MEDLINE | ID: covidwho-946887

ABSTRACT

Since the discovery in 1796 by Edward Jenner of vaccinia virus as a way to prevent and finally eradicate smallpox, the concept of using a virus to fight another virus has evolved into the current approaches of viral vectored genetic vaccines. In recent years, key improvements to the vaccinia virus leading to a safer version (Modified Vaccinia Ankara, MVA) and the discovery that some viruses can be used as carriers of heterologous genes encoding for pathological antigens of other infectious agents (the concept of 'viral vectors') has spurred a new wave of clinical research potentially providing for a solution for the long sought after vaccines against major diseases such as HIV, TB, RSV and Malaria, or emerging infectious diseases including those caused by filoviruses and coronaviruses. The unique ability of some of these viral vectors to stimulate the cellular arm of the immune response and, most importantly, T lymphocytes with cell killing activity, has also reawakened the interest toward developing therapeutic vaccines against chronic infectious diseases and cancer. To this end, existing vectors such as those based on Adenoviruses have been improved in immunogenicity and efficacy. Along the same line, new vectors that exploit viruses such as Vesicular Stomatitis Virus (VSV), Measles Virus (MV), Lymphocytic choriomeningitis virus (LCMV), cytomegalovirus (CMV), and Herpes Simplex Virus (HSV), have emerged. Furthermore, technological progress toward modifying their genome to render some of these vectors incompetent for replication has increased confidence toward their use in infant and elderly populations. Lastly, their production process being the same for every product has made viral vectored vaccines the technology of choice for rapid development of vaccines against emerging diseases and for 'personalised' cancer vaccines where there is an absolute need to reduce time to the patient from months to weeks or days. Here we review the recent developments in viral vector technologies, focusing on novel vectors based on primate derived Adenoviruses and Poxviruses, Rhabdoviruses, Paramixoviruses, Arenaviruses and Herpesviruses. We describe the rationale for, immunologic mechanisms involved in, and design of viral vectored gene vaccines under development and discuss the potential utility of these novel genetic vaccine approaches in eliciting protection against infectious diseases and cancer.


Subject(s)
Cancer Vaccines/immunology , Genetic Vectors , Neoplasms/immunology , Viral Vaccines/immunology , Virus Diseases/immunology , Viruses/genetics , Animals , Humans , Immunity , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL